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Using bosonization-fermionization transformation, we map the Tomonaga-Luttinger model of spinless fer-
mions with nonlinear dispersion on the model of fermionic quasiparticles whose interaction is irrelevant in the
renormalization group sense. Such mapping allows us to set up an expansion for the density-density propagator
of the original Tomonaga-Luttinger Hamiltonian in orders of the �irrelevant� quasiparticle interaction. The
lowest order term in such an expansion is proportional to the propagator for free fermions. The next term is
also evaluated. The propagator found is used for calculation of the Coulomb drug resistivity r in a system of
two capacitively coupled one-dimensional conductors. It is shown that r is proportional to T2 for both free and
interacting fermions. The marginal repulsive in-chain interaction acts to reduce r as compared to the nonin-
teracting result. The correction to r due to the quasiparticle interaction is found as well. It scales as T4 at low
temperature.
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I. INTRODUCTION

The bosonization has been an indispensable tool for one-
dimensional �1D� interacting fermion studies. The advantage
of the bosonization is that it allows us to treat exactly the
fermion interaction operator. This operator is marginal in the
renormalization group �RG� sense and therefore cannot be
dealt with the help of perturbative approximations.

However, the bosonization becomes inconvenient when
one needs to go beyond the marginal operators. For example,
when calculating the Coulomb drag resistivity in the system
of two 1D wires,1–4 it is necessary to account for the disper-
sion curvature vF� of the fermions5 which is an irrelevant
operator. In the language of the bosonization, such operator
introduces interaction between the bosons with the coupling
constant vF� . This destroys the solubility of the bosonized
Hamiltonian.

Moreover, the Coulomb drag resistivity r is nonanalytical
in vF� ,

r � �vF� � . �1�

This indicates that simple perturbation theory in orders of vF�
is not applicable.

Different methods were used to address the issue of the
nonlinear dispersion.5–14 Unfortunately, these papers either
rely on numerical calculation or exact solubility or employ
uncontrollable approximations or devise methods suitable for
a particular task at hand. No universal approach emerged
from those works.

A detour around the bosonization was proposed in Refs.
15 and 16, where it was shown that a generic Tomonaga-
Luttinger �TL� model of 1D interacting spinless fermions
may be mapped on a system of free fermionic quasiparticles
with weak irrelevant �in RG sense� interactions. The latter
approach was particularly convenient for evaluation of the
density-density correlation function. It was demonstrated that
this correlation function is proportional to the density-density
correlation function of the free fermions plus small correc-
tions due to the interactions between the quasiparticles. In

Refs. 15 and 16, the density-density retarded propagator Dk�

and the density spectral function Bk�=−2 Im Dk� were deter-
mined to zeroth order in the quasiparticle interaction.

Since the Coulomb drag resistivity is a functional of Bk�,
it is natural to apply the method of Refs. 15 and 16 to the
problem of calculating the Coulomb drag resistivity. This is
the purpose of this paper. More specifically, we will show
that at small temperature, r�aT2, where the coefficient a is
a decreasing function of the in-chain repulsion, and that cor-
rection due to the quasiparticle interactions �r vanishes
quicker than T2: �r�T4. These are two main results derived
below.

The presentation is structured as follows. First, in Sec. II,
we establish the mapping of the TL model on the quasipar-
ticle model. Next, in Sec. III, we obtain the density-density
propagator and the Coulomb drag resistivity to zeroth and
first orders in the quasiparticle interaction. The conclusions
of the paper are given in Sec. IV.

II. MAPPING

In this paper, we will study the model of 1D fermions
whose Hamiltonian is

H = Hkin + Hnl + Hint, �2�

Hkin = ivF� dx�:�L
† � �L:− :�R

† � �R:� , �3�

Hnl = vF� � dx�:���L
†����L�: + :���R

†����R�:� , �4�

Hint = g� dx�R�L, �5�

where �R,L are chiral fermionic fields corresponding to the
right-moving �subscript R� and left-moving �subscript L� fer-
mions, �R,L= :�R,L

† �R,L: are chiral fermion densities, and the
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colons denote normal ordering. The cutoff � is assumed for
this quantum field theory.

A nonperturbative approach to handle Hamiltonian H was
proposed in Ref. 15. There, a unitary operator U was con-
structed which transforms H into the quasiparticle Hamil-
tonian,

Hqp = H̃kin + H̃nl + H̃int� + ���NR + NL� , �6�

where NR,L are the total number of right-moving �left-

moving� fermions, H̃kin and H̃nl have the same form as Hkin
and Hnl but with ṽF and ṽF� instead of vF and vF� ,

H̃kin = iṽF� dx�:�̃L
† � �̃L:− :�̃R

† � �̃R:� , �7�

H̃nl = ṽF� � dx�:���̃L
†����̃L�: + :���̃R

†����̃R�:� , �8�

ṽF = vF�1 − 	 g

2�vF

2

, �9�

ṽF� =
vF�

4
�K3/2 + 3K−1/2� . �10�

The usual TL parameter K is used in the last formula, K
=��2�vF−g� / �2�vF+g�. Operators with tildes correspond

to the quasiparticles: �̃p is the quasiparticle field, below we
will use �̃p, which is the quasiparticle density.

The quasiparticle interaction H̃int� in Eq. �6� is given by the
following expression:

H̃int� = − �
p

ipg̃�� dx�̃−p�:�̃p
†���̃p�:− :���̃p

†��̃p:� , �11�

g̃� =
�vF�

2
�K3/2 − K−1/2� . �12�

In Eq. �11�, the summation runs over the chirality index p
=R ,L whose numerical values are p= +1 for R and p=−1 for

L. Observe that the operator H̃int� is irrelevant: its scaling
dimension is equal to 3 which is greater than 2.17 �To evalu-
ate the scaling dimension, one has to add together the scaling
dimensions of two fermion operators, the gradient and the
electron density operator: 1 /2+1 /2+1+1=3�.

The chemical potential shift �� in Eq. �6� is also induced
by the transformation U. However, since such shift causes
nothing but additional renormalization of the quasiparticle
dispersion parameters ṽF and ṽF� , we will not keep track of it
below.

The readers who are interested to learn how operator U is
constructed should consult Refs. 15 and 16. Here, we will
use bosonization-fermionization sequence to establish the
desired equivalence between H and Hqp. That way, we will
derive the result we need with no reference to the new tech-
nique unfamiliar to the majority of the researchers in the
field.

The bosonization prescription17,18 expresses the 1D chiral
fermion field as an exponential of the bose field 	 and its
conjugate 
,

�p
†�x� = �2�a�−1/2�pei���
�x�+p	�x��, �13�

where a�1 /� and �p is the Klein factor. Consequences of
this formula are

�p =
1

2��
��	 + p � 
� , �14�

− ip:�p
†���p�: + H.c. =

1

2
:��	 + p � 
�2:, �15�

:���p
†����p�:−

1

6
�2�p =

��

6
:��	 + p � 
�3:. �16�

Using the above formulas, we can write the bosonic form of
H,

H�	,
� = Hkin�	,
� + Hint�	,
� + Hnl�	,
� , �17�

Hkin + Hint =
ṽF

2
� dx�K:��
�2: + K−1:��	�2:� , �18�

Hnl =
��

6
vF� � dx�

p

:��	 + p � 
�3:. �19�

Equation �19� was derived in Ref. 19.
Once the bosonic form is explicitly written, we are ready

for the second step of the derivation—rescaling of the

bosonic fields: 	̃=K−1/2	 and 
̃=K1/2
. The different
pieces of Eq. �17� can be expressed in terms of this boson as
such

Hkin + Hint =
ṽF

2
� dx�:��
̃�2: + :��	̃�2:� , �20�

Hnl =
��

6
vF� � dx�

p

:�K1/2 � 	̃ + pK−1/2 � 
̃�3:. �21�

Introducing a fermion �the quasiparticle� with the help of the
formula

�̃p
†�x� = �2�a�−1/2�pei���
̃�x�+p	̃�x��, �22�

one can refermionize H. Namely, inverting Eq. �15�, we ob-
tain for the sum Hkin+Hint,

Hkin + Hint = H̃kin, �23�

where H̃kin is given by Eq. �7�. On the right-hand side of this
expression, the interaction term �dx�̃R�̃L is absent. Thus, the
marginal interaction, the most troublesome part of the
Hamiltonian, is removed.

The price we have to pay for the absence of the marginal

interaction is that Hnl expressed in 	̃, 
̃ �Eq. �21�� cannot be
easily fermionized. It is convenient to rewrite the latter equa-
tion,
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Hnl =
��

6
ṽF� � dx�

p

:��	̃ + p � 
̃�3:

+
g̃�

4��
� dx�

p

:��	̃ + p � 
̃�2��	̃ − p � 
̃�: .

�24�

The advantage of this form is that it depends on ��	̃��
̃�
combinations only. Thus, Eqs. �14�–�16� may be immediately
applied and Hnl may be fermionized,

Hnl = H̃nl + H̃int� , �25�

where H̃nl and H̃int� are given by Eqs. �8� and �11�.
This almost concludes the derivation of Eq. �6�. What we

lack is the �� term of Hqp. To obtain this term, we must �i�
handle normal ordered expressions more accurately and �ii�
take special care about the zero modes NR,L. Technically, this
is similar to the treatment of Refs. 15 and 16. Since we are
not interested in the chemical potential shift, we will not
address this issue here.

III. DENSITY-DENSITY PROPAGATOR AND THE
COULOMB DRAG RESISTIVITY

Once the mapping of H on Hqp is established, we can use
it to calculate the density-density propagator Dk�. First, let us
find the following density-density correlation function,

R = ��R�x,� + �L�x,����R�0,0� + �L�0,0��� . �26�

In the bosonic form, it is equal to

R =
1

�
�	�x�e−H � 	�0�� . �27�

After the field rescaling, it becomes

R =
K
�

�	̃�x�e−Hqp � 	̃�0�� . �28�

Under fermionization, R transforms into

R = K��̃R�x,� + �̃L�x,����̃R�0,0� + �̃L�0,0���qp, �29�

where the subscript “qp” reminds that the averaging is to be
performed with respect to the quasiparticle Hamiltonian Hqp.

One can prove through the same line of reasoning that

Dk� = KD̃k�, �30�

where D̃k� is the density-density propagator for the quasipar-
ticle Hamiltonian Hqp. Consequently, the task of finding the
density-density propagator for the physical fermions is re-
duced to the task of finding the quasiparticle density-density
propagator. The latter is much easier for the quasiparticle

interaction, H̃int� is irrelevant in the RG sense.
As a starting point, we calculate Dk� to zeroth order in

H̃int� ,15,16

Dk�
0 =

K
4�ṽF�k

ln� �ṽFk − ṽF�k2�2 − �� + i0�2

�ṽFk + ṽF�k2�2 − �� + i0�2� . �31�

The superscript “0” in the above formula indicates that the
expression is valid to zeroth order in g̃�.

The spectral function is therefore,

Bk�
0 =

K
2ṽF�k

����2 − �ṽFk − ṽF�k2�2�

− ���2 − �ṽFk + ṽF�k2�2��sgn � . �32�

This expression can be further used for evaluation of the
Coulomb drag resistivity. Before proceeding with such cal-
culations, let us briefly explain what is Coulomb drag.

In the Coulomb drag experiment, two parallel 1D wires
�subscript i=1,2� of length L with Hamiltonians H �Eq. �2��
are coupled capacitively with the Hamiltonian HC
=gC�dx�1�2. Because of this coupling, electrical current I in
one of the wires induces potential drop V across the other
wire. The proportionality coefficient between V and I is
called the Coulomb drag resistivity r=V / IL. It characterizes
the pulling force which the fermions in the current-carrying
wire exert on the fermions in the other wire. The experimen-
tal physics of the Coulomb drag is quite rich: the observed
values of r could be either positive or negative and show
dependence on temperature, spacial inhomogeneity, and ap-
plied magnetic field.

In general, two mechanisms for the Coulomb drag are
discussed in the theoretical literature.3 According to one
mechanism, the drag occurs because the Wigner crystallike
correlations in both wires lock against each other. In the RG
language, this corresponds to the relevance of the interwire
backscattering interaction. Such mechanism works best at
zero temperature but quickly deteriorates at T�0. We will
not study this mechanism in our paper.

The second mechanism is insensitive to the interwire
backscattering. Instead, it relies upon interaction of the
smooth components of the electron densities. It is more re-
silient toward temperature, but the resultant value of r is
proportional to �vF� �. Because of this, it is impossible to study
the second mechanism within the well-established frame-
work of the one-dimensional bosonization. The purpose of
this paper is to provide a reliable approach overcoming this
difficulty.

We start with the following formula for r �Eq. �7� of Ref.
5� which is valid when the interwire backscattering can be
neglected,

r =
gC

2

16�3n2T
�

0

+�

dk�
0

+�

d�
k2B1,k�B2,k�

sinh2��/2T�
. �33�

Here, n is the electron density. The spectral density A�k ,��
of Ref. 5 relates to our spectral density Bk� as Bk�=
−2A�k ,��. In that reference, the notation U12 is used for the
interwire coupling constant gC. Below, we will study the case
of identical wires: B1=B2=B.

Since we know Bk� to zeroth order in g̃�, it is straightfor-
ward to find r with the same accuracy. Substituting Bk�

0 into
Eq. �33�, we obtain

DENSITY-DENSITY PROPAGATOR FOR ONE-… PHYSICAL REVIEW B 77, 125109 �2008�

125109-3



r =
gC

2 K2

64�3�ṽF��2n2T
�

0

+�

dk�
�−

�+

d�
1

sinh2��/2T�
, �34�

�� = ṽFk � �ṽF� �k2. �35�

Evaluating the integral,

�
�−

�+

d�
1

sinh2��/2T�
�

2�ṽF� �k2

sinh2�ṽFk/2T�
, �36�

we find

r =
gC

2 K2

24�ṽF
3 �ṽF� �n2T2, �37�

where we used the identity

�
0

+� x2dx

sinh2 x
=

�2

6
. �38�

The electron density, which enters Eq. �37�, is not an inde-
pendent quantity. It can be expressed in terms of the disper-
sion parameters: n=vF / �2�vF��.

Furthermore, it is possible to show with the help of Eqs.
�9� and �10� that vF= ṽF+O�g2� and vF� = ṽF� +O�g2�. Since
our accuracy does not allow us to keep O�g2� terms, we can
replace ṽF by vF and ṽF� by vF� in Eq. �37�. Thus, it is true that

r � aT2, �39�

a =
�gC

2 K2�vF� �

6vF
5 + O�g2� . �40�

The interaction enters the expression for a through K2=1
−g / ��vF�+O�g2�. We see that the repulsive in-chain interac-
tion �g�0� acts to reduce r.

Equation �39� may be cast in the following form:

r �
c1K2

l0
	 T

�F

2

, �41�

where l0
−1 and �F are defined in Ref. 5. They are

1

l0
= 	 gC

2�vF

2

n =
gC

2

8�3vF�vF

, �42�

�F = vF�kF
2 =

vF
2

4vF�
. �43�

The numerical coefficient c1 is equal to �4 /12. For free fer-
mions �K=1�, the formula similar to Eq. �41� was derived in
Ref. 5.

Furthermore, that paper established that r�T2 for both
noninteracting fermions and for exactly soluble Calogero-
Sutherland model. Our Eq. �37� proves that T2 dependence
holds for a generic interacting model as well.

Despite general agreement between our Eq. �41� and Eq.
�13� of Ref. 5, a discrepancy does exists. In Ref. 5, two
values for c1 were reported �see discussion after Eq. �13� in
the latter reference�: �4 /12 for approximate spectral function

and �2 /4 for exact spectral function. Why our c1 coincides
with the approximate c1 of Ref. 5 and not with the exact is
unclear.

Equation �39� accounts for effects of marginal interaction
g. In addition to that, our method allows us to evaluate the
correction �r to Eq. �39� due to the quasiparticle interaction.
To find �r, we calculate the lowest order correction to Dk�

0 .

Such correction appears in the first order in g̃�: since H̃int�
couples the right-moving and the left-moving quasiparticles,
the expectation value �̃R�x ,��̃L�0,0�� taken with respect to
Hqp �Eq. �6�� is no longer zero but instead O�g̃��. Thus, full
Matsubara propagator D=D0+�D, where

�D�x,� = K�D̃�x,� � K� d���̃R�x,�H̃int� ����̃L�0,0���0

+ �̃L�x,�H̃int� ����̃R�0,0���0� , �44�

where the symbol ¯��0 stands for time-ordered averaging
with respect to the noninteracting �g̃�=0� quasiparticle
Hamiltonian.

The Feynman diagram which describes �D̃ is shown on
Fig. 1. The wavy interaction line is to be identified with
g̃��k1+k2−q1−q2�, ki, qi are the fermion momenta.

When evaluating �D, we note that in the noninteracting
quasiparticle Hamiltonian, the left-moving and the right-
moving quasiparticles are decoupled from each other. Con-
sequently, the object �L,RHint� �L,R��0 is split into products of
left-only and right-only expectation values. As a result, one
can show that

�Dk� = − 2g̃�K�
p

D̃pk�
0 P̃−pk�, �45�

where the chiral noninteracting propagator is

D̃pk�
0 =

p

4�ṽF�k
ln	 i� − pṽFk + ṽF�k2

i� − pṽFk − ṽF�k2
 , �46�

and the propagator P̃p is defined as

P̃p�x,� = − ip�̃p�x,��:�̃p
†�0,0����̃p�0,0��:

− :���̃p
†�0,0���̃p�0,0�:���0. �47�

It equals

P̃pk� = −
1

2�ṽF�
+

�i� − pṽFk�
pṽF�k

D̃pk�
0 . �48�

To find the correction to the spectral function �B, it is
necessary to perform the analytic continuation in Eq. �45�:
�Dk�=−2g̃�K�pD̃−pk�

0 P̃pk�, where the retarded quantity

P̃pk�= �P̃pk��i�→�+i0 is equal to

FIG. 1. Feynman diagram corresponding to the lowest order
interaction correction to the density-density propagator.
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P̃pk� = −
1

2�ṽF�
+

�� − pṽFk + i0�
pṽF�k

D̃pk�
0 . �49�

Introducing the chiral spectral density, B̃p
0 =−2 Im D̃p

0, we ob-
tain for �B,

�Bk� =
g̃�K
�ṽF�

�
p

B̃−pk�
0 �4�ṽF Re D̃pk�

0 + 1� . �50�

Observe that B̃−p
0 is nonzero only in a narrow region ��

+ pṽFk�� �ṽF� �k2. Thus, defining ��p=�+ pṽFk ���p=O�k2��,
one can expand Re D̃p

0 in orders of k,

�Bk� �
g̃�K
�ṽF�

�
p

B̃−pk�
0 �−

p��p

2ṽFk
−

���p�2

4ṽF
2k2 −

�ṽF�k�2

12ṽF
2 � .

�51�

Placing Bk��Bk�
0 +�Bk� into Eq. �33�, one finds

�r � T4. �52�

Consequently, at low temperature, the interaction correction
�r to the Coulomb drag resistivity r vanishes quicker than

T2. Thus, the noninteracting quasiparticle result �Eq. �37��
suffices to capture the leading behaviour of r at T→0.

IV. CONCLUSIONS

Using bosonization-fermionization trick, we mapped the
Tomonaga-Luttinger Hamiltonian with nonlinear dispersion
on the Hamiltonian of the quasiparticles with irrelevant in-
teraction. This mapping allows us to evaluate the density-
density propagator of the Tomonaga-Luttinger model with
nonlinear dispersion. The propagator itself was used to cal-
culate the temperature dependence of the Coulomb drag re-
sistivity r. It was established that r�T2 at low T for both
interacting and free fermions. The irrelevant quasiparticle in-
teraction introduces additional correction which vanishes as
T4.
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